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peak loss will be greatest in the line that has the highest pl,

because Q decreases with p.

Figure 10 is a plot of the amplitude response of two first-

order lines with the same p but different ~Os when both

structures are immersed in a dielectric medium. The physical

parameters of the lines are given in the figure. The response

of these lines are similar to the air dielectric lines except

that the peak loss is slightly greater (as is expected) when

there is dielectric present. The value of a. is 0.014 at~o= 0.4

GHz.

Some of the above lines were built, and the amplitude

measurements made on these lines were all within twelve

percent of the calculated values.

VI. CONCLUSION

The results show (Figs. 6 to 10) that the losses cause a dip

in the amplitude response of the coupled transmission line,

all-pass networks just as they do for the all-pass network

composed of lumped elements. However, they also show

that for practical configurations and materials, the peak

amplitude loss is small for the first two periodicities. Thus,

it is possible to cascade many first-order or second-order

lines before the amplitude response must be equalized (for

most applications).
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Propagation Through a Twisted Medium

GLENDON C. McCORMICK, MEMBER, IEEE

Abstract-An explicit solution is obtained for propagation through

a uniform twisted auisotropic medium subject to the conditions that

propagation is along the twist axis, and that the structure is fine. The

propagation constants are altered and coupling exists between the propa-

gation modes. A parameter is defined which indicatea the tendency of the

radiation to adhere to the structure of the medium. The effects at bound-

ary discontinuities are discussed, and tapers to an isotropic medinm are

dealt with. The particular application of the theory to cases of polariza-

tion conversion, circular to pIane, and plane to plane are discussed.

I. INTRODUCTION

URING the course of development of a plastic strip

D
polarizer for an antenna fed by a line source, it

became apparent that the inclination of the strips

was not a simple parameter which could be simply related
to the plane of polarization. The finite thickness and cylin-
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and April 27, 1967. Much of the material contained in thk paper was
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The author is with the Radio and Engrg. Div., National Research
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drical shape of the polarizer combine to require individual

strips of helicoidal shape. The inclination angle of the strips

varies significantly about the nominal 45°; and on looking

through the polarizer, the strip structure appears to twist

about the propagation axis.

Consequently, the problem of propagation through a

twisted medium became of interest. Specifically, it was

necessary to determine the correct strip inclination and the

effect of the twist on the differential phase shift. The problem

was idealized by assuming an infinitesimally fine structure,

a uniform twist, and normal incidence.

Propagation through a twisted medium is a special case

of a more general theory developed by Suchy.1 Recently, a

paper by van Doeren2 has treated the twisted medium prob-
lem by means of direct computer solutions of the differential

equations. The solution in explicit form for the case of a

uniform twist is given in the following.

1K. Suchy, “Gekoppelte Wellengleichungen fiir inhomogene
anisotrope Medien;’ Z. Naturforsch., vol. 9a, pp. 630-636, 1954.

a R. E. van Doeren, “Polarization transformation in twisted aniso-
tropic media,” IEEE Trans. Microwave Theory and Techniques, vol.

MTT-14, pp. 106-111, March 1966.
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IL THEORY OF PROPAGATION

Assume fixed axes (x, y, z) and axes (x’, y’, z’) which rotate

uniformly about the z axis (Fig. 1). Then

x=.z’cos O—y’sin O

y=x’sin O+y’cos O
(1)

x’=xcos O+ysin O

‘y’ = —xsin9+gcos0

e = pa (2)

p is a constant which specifies a uniform right-hand twist.

Relationships among vector components are also similar to

(1).

The medium will be assumed to have a structure fixed in

the x’, y’ axes. If the medium had zero twist, there would be

two propagation constants associated with the structure

equivalent to a permittivity KZ for polarization in which the

electric vector is parallel to the x’ axis, and to a permittivity

K1 for polarization in which the electric vector is parallel to

the y’ axis; that is, Dz’ = KZEZ’ and DY’ = KIEV’. Then

D= = K2EZ’ cos O – KIEU’ sin 0

D. = K2EZ’ sin 0 + KIEV’ cos 0. (3)

The magnetic properties of the medium are assumed to be

isotropic so that Maxwell’s equations

jwll = curl H

–jPuH = curlE

lead to the equation

1.w2D = Ctll’1 (cud E).

On the assumption that incidence is normal and along the

z axis, the field components must be assumed uniform in

any x–y plane. Hence all derivatives with respect to x and y

on the right-hand side of the preceding equation vanish and

the equation reduces to

&Ez
~oJzDx = — —

IW

d2Eu
~W2Du = — —— .

822

Substituting (3) in (4)

(4)

($ ) L )i-b’ (E,’ cos 0) – ‘+P12 (E; sin 0) =0

(: ) (’2 “)
+8,2 (EJ sin 0) + ~+o,- (Ev’ cos 6) =0 (5)

where

,6,’ = /.LK,C112

@12 = ~KIU2. (6)

x

‘i

Fig. 1. The coordinate systems, x, y, z are
fixed axes. MIX’ =yO-v’ =pz.

From the relations

(
~ (E~’eiO) = el~ %~z + jPEx’

)

and

(
~ (E.’ei”) = e~a ~

dE=’
+ 2jp ~ – p2E;

)

and similar relations involving Ezfe–~o, Eu’e~O,and Ey’e–~O,it

is found that (5) reduces to

d2Ez’ dEz’
—+2jp T + (p22 – p2)&’

&2 ?

(

&&f dEu’
.

–.7’ ~ + 2jp ~ + (~,’ – pz)E;
)

d2Ez’ dEz’
— ~jp~ + (622 – P2)E.z’

dz2

(

d2Eu’ dEu’
. ~ — – 2jp

dz’ )
~ + (~,’ – p’)EJ .

.

It follows that

d2Ez’ dEu’
~ + (L%’ – P2)Ez’ = 2P ~

d2Eu~ dEz’
~ + (P12 – P2)Eg’ = – 2p —

: d.z
(7)

and after further manipulation

d4Ez’ d2Ex’
~ + (B22 + 012 + ~P2) ~

+ (B,2 – p2) (@,2 – P2)E,’ = O (8)

with a similar equation for E,’. Equation (8) is satisfied by

exponential functions, e~~z,subject to the indicial equation

f?’ – P2(P22 + 812 + fh’) + (01’ – p’) (/322– pz) = 0. (9)
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Fig. 2. Variation of p“ and L? with p for a typical numerical example.

~,= 1.75, B,= 2.00. (All quantities have reciprocal units of length.)

The solutions P“ and@ are given by

(3”2 = ~, + f?’ + p,,

+ (f-o”)

2

+ 2p2(~,’ + ,&3

p,= @+ P22 + p:2

- (f ;~12y+2p2(,1, +,22).

(lo)

(11)

Values of fl” and b’ for a typical case are shown plotted in

Fig. 2.

For a forward traveling wave let

Ez+’ = A+e–ifl”’ + a’Bhe-~~’z

jEuh’ = a“A+e-~fl”z + B+e–ifl’z. (12)

Substitution in (7) leads to the relations

2p@’ _ 13’2– 612 + P2
~f = (13)

p12 _ ~,z + ~2 – 2pp’

2pB” @ff2 – p22 + ~2

a“ = (14)
fy, _ @12 + ~z = 2pfi” “

Similar substitution for the backward traveling wave shows

that it may be expressed

Ez–’ = A_ef~”z + a’B–ei$’z

jEu–’ = – (a’’A_e~~’” + B–ei6”). (15)

Equations (12) and (15) may be combined in the equation

(E’) = (E+’) + (E-’) = (_:,;_.)(:::)

+(;;,;)(:;;:;)

in which

(16)

Because variation

may be written

445

with x and y is zero, the magnetic field

Substitution of the relations

E% = E,’ cos 0 – E.’ sin O

E. = Ez’ sin 0 + Eu’ cos O

e=p.z

gives

“ w.’( L?EU’
Hz=–~ —--sin O+— cos e

pu & &

+ p cos I!?ES’– p sin OEV’
)

dEz’

(

dEv’
Hu=~ —cos O———sin0

~a a~ &

)
– p sin OEZ’ – p cos OEu’ .

Then

j dEv’—.——
( )

—+pE; , (17a)
pa &

Similarly

(17b)

Or in matrix notation

Substitution of (16) in (18) gives

(Hi) = i {(
–p + a“p”, –pa’ + i?

pa j(rx”p – p“), j(p – Cl’@’))(%5:)

(

–p + CY’’p”, –pa’ + B’

–j(a”p – /3”), –j(p – C,’p’) )

A_eW’S

“i )}B-eifl’s “
(19),
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The inversion of (12) and (15) together with substitution in

(19) results in

(H’) = L [(G+ -L)(E+.’)+ (G – L)(-E-’)] (20)
pa

where

()a’ + a“ 1, 0
G=p ——

a“ — d o, –1

L=_jfi’+@”(), ~f( )a“ —a!’ a“, o
(21)

In deriving (20) and (21), use is made of four identities

easily obtained from (13) and (14)

2p(l + a’ci’) = (p” + ,8’) (a” + a’)

2p(l – Cl’a”) = (p” – p’) (a” – a’) (22)

~“(P’ + 6“) (1 — CJc’”) = (P” – ~’~”m (~” – ~’)

a’@ + 13”) (1 – a’a”) = – (~’ – a’ci’’~”) (a” – a’). (23)

III. TRANSFER REPRESENTATION

It is clear from the form of (12) to (20) that a coupled

transmission line formalism is appropriate to the present

discussion. An impedance or scattering representation could

be used, but it is found convenient, instead, to use a transfer

matrix representation, the purpose of which is to relate [he

field at one value of z to that at another value of z. Sub-

scripts a, b, c, etc. will refer to the planes z= a, z= b, z= c,

etc., where a< b < c. Then

‘Es+’)‘(-b,-3(23
with a similar expression for (J!&-’). The elimination of A+

and B+ between the two equations leads to the desired

relation

(E.,’) = M(Eb+’)

where

M= 1
1 – a’a”

“(

~@”t— ~fatteWC,—jal(ewft— #9~t)

_jaJ/(ei3”t– ~wt)j –afa~~ew’t+ @’t)

and t= b —a. It is found similarly that

(Es-’) = M*(E,_’)

so that (24) and (26) may be combined

(24)

(25)

(26)

(27)

1.0

.8

.6

v

.4

.2

0

.00001 .0001 .001 .01 I

‘!
10

Fig. 3. v as a function of the generalized parameters q and ~.
v specifies the anisotropy and .(_the rate of twist.

Quantities ~, and ~,, related directly to the properties of

the medium, will be defined

and the quantities e, ~, v, and 8 will be introduced

6 = (6” – p’)t = [(82 – &)2+ 4p2]W (29)

~ = (P”+ Km
= [(F2 + 61)2 + 4P2]’@ ;

2
(30)

d – 2CY’CY” 4p

(

&B2

)

1/2

v=

1 – a’a” – B2 + B1 (L – li)2 + 4P2
(31)

‘=(-Y4=W4 (32)

Of these quantities, which are introduced because they

greatly facilitate the interpretation of transfer and polariza-

tion relations, @ and 6 seldom require consideration and c

can be regarded as a generalized differential phase shift.

v is an important single parameter in terms of which those

special properties related to the twist of the material can be

expressed. Using the new quantities, (25) becomes

(33)

where

6 0, –1

(, )}
+vsinj- ~

o
(34)

v is shown plotted in Fig. 3 as a function of f and T which,

respectively, specify the twist and anisotropy of the material

and are given by

2P2 K2 — KI
f= (35)

p,’ + p,z ;
q= —.

K? + KI



McCORMICK : PROPAGATION THROUGH TWISTED MEDIUM

The frequency dependence of the quantities can be ob- and the quantities h, 1, g, and m are given by

tained in a-straightforward manner with the following result

1–L
f de i31P2 h=

—— . (36)
e d! 4P2

1+
(B2 – R)2

l+g-f d+ 131L32
—— .

+ dj 4P2
1+ _

(B1 + 1%)2

(37) =

f dv ‘1’’22[’-;(+++)1.,38,——.——
V dj

(

4P2--

)

g=

P121922 1 + .

(132 – BIF

Of particular interest is the fact that dc/df = O at p =p, where

w 4P2

flz l+_
)(@2 + 81)2 b

(d132 l+=a
)(132+ B1)2 a

IV. DISCONTINUITIES AND TRANSITION REGIONS

The electric and magnetic fields must match at a dis-

continuity across the plane z= a caused by a change in

K1, KZ, or p. That is, where b= a+O

(J?i.+’) + (~.-’) = (&+’) + (~b-’) (41)

(~.+’) + (~.-’) = (~,+’) + (~& ‘). (42)

The substitution of (20) in (42) gives two equations for

(EM’) and (E.-’), and the transfer matrix for the discon-

tinuity boundary can be derived

447

(46)

and dv/df = O at p =p, where

The relationship for two discontinuities
2 D12b22

(40)
twist section can be immediately written

“2 = I L312 + B22 “

where

U = ~L.-’(Gb + Lb – G.+ La)

(

4(1 + h), –jg
.

–jm, *(1 + 1))

V = ~La-l(G~ – Lb – Go+ L.)

(

*(1 – h), –jg——
–jm, $(1 – 1))

(47)

separated by a

(E,+’)“( )(E,-’) “
(48)

An explicit expansion of (48) can be obtained if the medium

at z= d is the same as at z= a. If, in addition, 4= nr and
~= n~r, then

v ~b+f)( ) (43) That is the field, irrespective of its incident polarization,
U* h7b_’

emerges from the twist medium unchanged except for a

rotation about the z axis of angle 0. A rearrangement of the

equations in scattering form is straightforward and permits

the direct evaluation of reflection and transmission coeffi-

cients at an interface.

(44) The special application to a tapered or stepped transition

region will be examined. In addition to the usual assump-

tions for a taper that reflections do not significantly accumu-

late, it will be supposed further that v= constant, and that

(45) the increment in P(I% – ,&/flz+F1) can be neglected. Then

the transfer horn medium (a) to medium (b) as shown in
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Ma Uab Mb

Fig. 4. The interface between two regions having ditlerent
anisotropy and twist parameters.

EISOTROPIC

‘IN ITAPER
UNIFORM

TWIST
TAPER IISOTROPIC

‘OUT

Fig. 5. The transition into and out of a twist region via tapers.

Fig. 4 will be given by the matrix product Ma U~bMb in

which U.b has zero cross terms. That is

“auabMb=c’2Nt-”3
(*(1 + h), o

.
0, +(1 + 1))

In the evaluation of the inner triple product it is”found that.

Therefore

It is obvious that this process is iterative through all taper

regions including regions of uniform twist. Therefore, a

twist medium suitably tapered from an isotropic medium of

constant Km to another isotropic medium of constant KOu~ as

shown in Fig. 5 can be described by the transfer matrix

K.., ‘/’N

()
transfer matrix = — (49)

Kin

where

N= N.N&C . . . . (50)

Due to the additive property of N, it follows that

E o, –1
+ v sin —

( )}21,0
(34)

where

It has been assumed that the tapering of the medium has

been gradual and such that v= constant. However, under

conditions of low effective dielectric constant and low rates

of twist, (49) to (51) can also be applied to a medium faced

by “quarterwave” layers.

V. POLARIZATION RELATIONS

The theory of the preceding sections has its most obvious

application in devices for polarization conversion. It will

be assumed that satisfactory transitions exist so that (49)

can be applied; and as a preliminary step, the rectangular

components will be related to circularly polarized com-

ponents as follows

(:)‘x-;; ;)(3 (52)

in which r’ and 1’ are, respectively, the complex amplitudes

of the right-hand and left-hand components. By the use of

(52) and its inverse, it follows that

(;)=+(::-)N(-;;:)(:) ’53)
from which

where

. (54)

<l – v’ sin;

~eia = (55)

cos e/2 + jv sin 2
2

Now if r’/l’ = pe’@’, then I p+ I/P– 1I is the axial ratio of

the polarization ellipse, and # the anlge which the polariza-

tion ellipse makes with the x’ axis, this angle being measured

to the major axis if P> 1 and to the minor axis if p< 1.

Equations (54) and (55) relate these quantities at the plane

z= a to the corresponding quantities at the plane z= b with

the geometry shown in Fig. 6.

For right-hand circular polarization at z= b, pb= co and

therefore pae2j*’a= – (j/s)e-$’. If pa= 1, the input radiation

is plane polarized, and the structure is a polarizer for the
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conversion of plane to circular polarization. It is seen from

(55) that

()2~a’=–~+ tan-’ vtan~ (RH). (56)

Forleft-hand circular p6=0, p.e2~*’a=jse–jo, and

()2yJJ=~+ tan-’ utan~ (LH). (57)
A

It follows from the further relation, s= 1, that

m- V’()6 = — + sin-l —
2 1–ZP “

(58)

Thus for a polarizer structure of given Bl, fh, andp, v is

determined by (31) and e by (58). Then the necessary input

inclination angle is given by (56) or (57) and the polarizer

thickness by (29). Examination of (56) and (57) shows that

~a’ varies from T Tr/4 at v= O, the familiar orientation for

zero twist, to {O, 7r/2 } at V2= 112. It is seen that there is a

rather marked departure from the usual polarizer relations

at V2= 1/2. Furthermore, it may be shown that there is an

improvement in frequency bandwidth by a factor of at least

7r/2. However, where a twist medium arises inadvertently

due to the use of helicoidal strips as alluded to above, it is

usual to find that the corrections to the usual polarizer rela-

tions are marginally significant.

If plane polarized radiation emerges at z= b then p~ = 1,

and if also pa= 1, a simple rotation of plane polarization has

resulted. For this condition to obtain

making use of (55)

()ikf!b’= C = – tan–l ?) tan~ (59)

and

()2#a’ = – IS = tan–l v tan ~ . (60)

Therefore the plane of polarization has rotated through an

angle R given by,

()R = A(3 + $6’ – +.’ = AO – tan–l v tan ~ . (61)
.

These remarkably simple relations (which are always subject

to the condition that plane polarization is converted exactly

to plane polarization) are an extension of those which exist

for a medium of zero twist. For the case of zero twist R= O

except when E= r in which case R is indeterminate, and any

rotation may be obtained. If v is nonzero, a finite rotation is

obtained for all thicknesses of structure and there is no in-

determinacy. A numerical example of the rotation of plane

polarization is shown in Fig. 7. The flat regions in R have

been noted by van Doeren.2

x’ ,

Fig. 6. The geometry for relating the polarization between the planes
z = a and z= b. The coordinate axes rotate through AO=p(b –a).

$J and &’ indicate the orientation of the polarization ellipse at
z = a and z= b. R indicates the total rotation angle of the plane of

polarization. For the conversion of plane polarization to plane
polarization 42= –~’ and R= AO+ti’ –$~’.

30

20

4’; ,.0

(RADIANS)
o

R
-1.0

3.0

2.0

$; 1.0

(RADIANS) o

R
-1.0

3.0

2.0

$; 1.0
(RADIANS) o

R
-1.0

0 .2 -4 6 8 I O 12 I-4 I-6 18 2-O

T

Fig. 7. ~~ and R as functions of T = t/Ao for typical numerical ex-
amples. ~.’ is the angle which the electric vector makes with the
strip structure at z = a, while R is the rotation of the polarization
plane. These quantities are determined by the condition that plane
polarization incident at z= a emerges as plane polarization at z= b
where b —a = t.
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VI. DISCUSSION

The main result of this investigation can be stated as

follows. If the rate of twist is relatively low and the anisot-

ropy relatively high, then the field can be thought of as

attaching itself to the structure of the medium as it propa-

gates through it, and it therefore rotates. This situation cor-

responds to a low value of v and the conclusion stated above

is evident from (34) due to the relative unimportance of the

cross terms of the transfer matrix. In general, however, the

twist generates polarization coupling and an alteration of

propagation constants.

Discontinuities perpendicular to the direction of propa-

gation can be handled. Computer calculation would gen-

erally be necessary, but marked simplification occurs in

special cases notably for a taper region for which explicit

formulas can be obtained.

A physical structure having the properties dealt with in

this paper is not hard to visualize. It could consist of layers

of a fabric in which warp and weft have markedly different

dielectric properties, each layer being oriented at an angle

with respect to the adjacent layer. Interesting speculation

on this matter is contained in a recent letter by Shelton. 3

Any degree of twist per unit wavelength is possible with

these structures but the range of anisotropy appears to be

limited. A polarizer having a modest improvement in fre-

quency bandwidth (corresponding to V2= 1/2) is feasible. The

frequency independent-relations (39) and (40) can also be

realized, but with a low anisotropy interesting polarization

properties would require an excessive thickness of material.

Finally it should be pointed out that this paper deals with

a one-dimensional problem. The lateral limitation of the

geometry by means of a waveguide or other boundary would

greatly complicate it.

t P. Shelton, “Comments on ‘polarization transformation in twisted
anisotropic media,’” IEEE Trans. Microwave Theory and Techniques

(Correspondence), vol. MTT-14, p. 579, November 1966.

The Numerical Solution of Rectangular Waveguide

Junctions and Discontinuities of Arbitrary

Cross Section

CORNELIS A. MUILWYK, STUDENT MEMBER, IEEE, AND J. B. DAVIES

Abstract—A method is described of calculating automatically the

performance of junctions of rectangular waveguides including conduct-

ing cylinders of arbitrary shape. The only restriction is that the overall

problem should he effectively two-dimensional, i.e., the structure be uui-

form in some cross section. The one basic approximation made (which

could be removed) is shown to give useful results for the devices tested,

viz., for various shaped irises (indnctive and capacitive) and the 4-port

H-plane junctiou.

I. INTRODUCTION

I
N AN EARLIER PAPER [1], the authors described a

method of solving the problem of the hollow waveguide

of arbitrary shape, and indicated that the procedure

could be applied directly to the solution of a wide range of

waveguide discontinuity problems of engineering interest.

The object of this paper is to describe the application and to

give some typical results.

Manuscript received Deeember 5, 1966; revised March 23, 1967.
The work of C. A. Muilwyk was supported by the Athlone Fellow-
ships Managing Committee and the National Research Council of
Canada.

C. A. Muilwyk is with General Staff Engineering, Alberta Govern-
ment Telephones, Edmonton, Canada. He was formerlv at the DetX.
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As with the previous paper [I], the object is to enable a

wide class of problems to be solvable with the one method

and the one computer program. It should be emphasized that

the technique of this paper depends on being able to calcu-

late the cutoff frequencies of an arbitrarily shaped waveguide.

Other methods have been described [2], [3] besides that

used in thk paper, but it is not clear from published results

whether any of these is as automatic and rapid in computing.

The method can be applied directly to the analysis of a
2-, 3-, or m-port junction of rectangular waveguides contain-

ing arbitrarily shaped conducting structures. The waveguides

may have different dimensions, but the overall structure must

be uniform (i.e., have constant cross section) in one direc-
tion (either the “broad” or “narrow” transverse direction)

so that the resulting boundary-value problem is effectively

two-dimensional. Examples of such structures would include

the conducting post or iris (of any shaped cross section) in

rectangular waveguide, an offset or change of transverse

dimension in the rectangular waveguide, and for m-port

junctions the T, Y, and 4-port cross junctions. All these ex-

amples could be in the E plane or H plane.

The method used relies on analysis of the junction when

supporting pure standing waves, as used experimentally in

the “nodal-shift” or Weissfloch-Feenberg method of mea-


