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peak loss will be greatest in the line that has the highest ps,
because Q decreases with p.

Figure 10 is a plot of the amplitude response of two first-
order lines with the same p but different fis when both
structures are immersed in a dielectric medium. The physical
parameters of the lines are given in the figure. The response
of these lines are similar to the air dielectric lines except
that the peak loss is slightly greater (as is expected) when
there is dielectric present. The value of «. is 0.014 at f;=0.4
GHz.

Some of the above lines were built, and the amplitude
measurements made on these lines were all within twelve
percent of the calculated values.

VI. CONCLUSION

The results show (Figs. 6 to 10) that the losses cause a dip
in the amplitude response of the coupled transmission line,
all-pass networks just as they do for the all-pass network
composed of lumped elements. However, they also show
that for practical configurations and materials, the peak
amplitude loss is small for the first two periodicities. Thus,
it is possible to cascade many first-order or second-order
lines before the amplitude response must be equalized (for
most applications).
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Propagation Through a Twisted Medium

GLENDON C. McCORMICK, MEMBER, IEEE

Abstract—An explicit solution is obtained for propagation through
a uniform twisted anisotropic medium subject to the conditions that
propagation is along the twist axis, and that the structure is fine. The
propagation constants are altered and coupling exists between the propa-
gation modes. A parameter is defined which indicates the tendency of the
radiation to adhere to the structure of the medium. The effects at bound-
ary discontinuities are discussed, and tapers to an isotropic medium are
dealt with. The particular application of the theory to cases of polariza-
tion conversion, circular to plane, and plane to plane are discussed.

1. INTRODUCTION

URING the course of development of a plastic strip
I:) polarizer for an antenna fed by a line source, it
became apparent that the inclination of the strips

was not a simple parameter which could be simply related
to the plane of polarization. The finite thickness and cylin-
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drical shape of the polarizer combine to require individual
strips of helicoidal shape. The inclination angle of the strips
varies significantly about the nominal 45°; and on looking
through the polarizer, the strip structure appears to twist
about the propagation axis.

Consequently, the problem of propagation through a
twisted medium became of interest. Specifically, it was
necessary to determine the correct strip inclination and the
effect of the twist on the differential phase shift. The problem
was idealized by assuming an infinitesimally fine structure,
a uniform twist, and normal incidence.

Propagation through a twisted medium is a special case
of a more general theory developed by Suchy.! Recently, a
paper by van Doeren? has treated the twisted medium prob-
Iem by means of direct computer solutions of the differential
equations. The solution in explicit form for the case of a
uniform twist is given in the following.

1 K. Suchy, “Gekoppelte Wellengleichungen fiir inhomogene
anisotrope Medien,” Z. Naturforsch., vol. 9a, pp. 630-636, 1954,

2 R. E. van Doeren, *“Polarization transformation in twisted aniso-
tropic media,” IEEE Trans. Microwave Theory and Techniques, vol.
MTT-14, pp. 106-111, March 1966.
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1I. THEORY OF PROPAGATION
Assume fixed axes (x, y, z) and axes (x/, y, z’) which rotate
uniformly about the z axis (Fig. 1). Then
z =" cosf — y sin

y =2 sin 8+ ¥4 cos b

2’ = 2xcosf+ ysin b w
Yy = —zsinf+ ycosd
where
8 = pz. (2)

p is a constant which specifies a uniform right-hand twist.
Relationships among vector components are also similar to
.

The medium will be assumed to have a structure fixed in
the x’, y" axes. If the medium had zero twist, there would be
two propagation constants associated with the structure
equivalent to a permittivity «» for polarization in which the
electric vector is parallel to the x” axis, and to a permittivity
x1 for polarization in which the electric vector is parallel to
the y’ axis; that is, D,/=«x.E, and D,/=E,’. Then

D, = B, co80 — «uE, sin 6
Dy, = xl,! sin 6 + «1E,/ cos 6. (3)

I

The magnetic properties of the medium are assumed to be
isotropic so that Maxwell’s equations
joD = curl H
—juwH = curlE

lead to the equation
uw?D = curl (curl E).

On the assumption that incidence is normal and along the
z axis, the field components must be assumed uniform in
any x-y plane. Hence all derivatives with respect to x and y
on the right-hand side of the preceding equation vanish and
the equation reduces to

27 3k,
M z =
9z
92K,
pw?Dy = — o )

Substituting (3) in (4)
62 62 .

(6—Z2+B22) (B, cos )~ <:9§+,812> (E, sin ) =0
62 62

(———1—522) (E, sin )+ <——l—[31‘~’> (B, cos 8)=0 (5)
922 922

where

B2 = pkaw?

Bi? = pkiw®. (6)
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The coordinate systems, x, y, z are
fixed axes. xOx’ =y0y’ =pz.

Fig. 1.

From the relations

7

< (E/e®) = e (d - +]'I>Ex’>
dz dz
and
d? d:E,’ dE,’
'(_i;; (E:r,ejg) = ej0< d2? + 2.717 dz - szx/>

and similar relations involving Ee~#, E/e®, and E,’e %, it
is found that (5) reduces to

d2.Ez’ + 2jp dEz, + (622 _ p2)Ez,
dz? dz
[ BB/ . dE/
== .7< FRE 27p = + 6° - pz)Ey’)
PEL i Py (g — s
dz? dz
_ j(dZEU/ o dk, b G — ) E,>
dz? dz
It follows that
dQE;D’ + (ﬁzz _ pz)Ex’ _ 2p d.Eyl
dz? dz
2B, dE.’

G T @ PIE = = 2p ™

and after further manipulation

d*E,’
+ (82 + 8.2 4 2p9)
dz*

2f

dz?
+ (B2 — pD (B2 — pHE, =0 (8)

with a similar equation for E,’. Equation (8) is satisfied by
exponential functions, e, subject to the indicial equation

Bt — BB + B2 + 2p%) + (6. — p) (B2 — pH) = 0. (9)
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20y

Fig. 2. Variation of g’ and g’ with p for a typical numerical example.
B81=1.75, B2=2.00. (All quantities have reciprocal units of length.)

The solutions 5" and g’ are given by
'8//2 —_ pZ + M
2
(10)
622 - 612 2
+ —‘*‘2— + 2p*(B:2 + 62%)
g2 = p? + ‘8_22—;—6{

_ 1/ (B—;—B> +opBe 4+ 8. (1)

Values of 8" and g’ for a typical case are shown plotted in
Fig. 2.
For a forward traveling wave let

Bt = Ao+ o/ Bye s

B, = o/’ A e B"7 - Bz, (12)
Substitution in (7) leads to the relations
2 / 2 2 2
o = 18] _ B8 B*+p (13)
8’ — B* + p? 2pB’
2 7 Iy 2 2
o = pB =ﬂ B2’ + p* (14)
6//2 _ 612 + pz QPBH

Similar substitution for the backward traveling wave shows
that it may be expressed

E,' = A e®'s4 o/B_e#'?
JE, = — (o/"A_e#®'* 4 B_e®'%).

(15)

Equations (12) and (15) may be combined in the equation
1, o ><A+e_f/3"z>
—ja’", —j)\ Bye s
o vt
je’; j/\ B_e#'?

in which

(E") = (B + (B) = <

(16)

B,
(B =< ,>, ete.
By
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Because variation with x and y is zero, the magnetic field
may be written

j OE,
H, =—
uw 9z
) dF,
sz_.J___’_’.
uw 02

Substitution of the relations

E, = E, cosf — E,sind
E, = E/sin0+ E, cos 8
0 = pz

gives
| [ OE, oE,
sz——j—< sin 6 + —— cos 6
pow \ 02 9z
+ p cos 0E,” — psin 0E/>
j [0E; dE,
Hy=—‘< cosf — ——sin 8
uw \ 0z 9z
— psin 6E,” — p cos 0, )
Then
H, = H,cos 0+ H,sin 8
| [ OE,
- _ i( LA pE,'). (173)
pw \ 9z
Similarly
’ J (9EJ At
y T — pE/ ). (17b)
uw \ dz
Or in matrix notation
a
j -p — g
H) =— (&). (18)
e
dz ’ P J
Substitution of (16) in (18) gives
oy = (S Yy
po \\j(e"'p — 8"), j(p — &'B)/\ Bye %'
+ <__p + a// l/7 __pal —I—B, )
—j('p — B8"), —ilp — aB)
A_ejﬂ,'z
. <Bvem,2)} . (19).
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The inversion of (12) and (15) together with substitution in
(19) results in

(H') = ,j“w (G + L) (B + @ - DEDH]  (©0)

-rir = )
~iaow)

In deriving (20) and (21), use is made of four identities
easily obtained from (13) and (14)

where

L= (21)

2p(1 + alall) —_ (BII +BI)(OCII + a/)

2p(1 — &) = (8" — B) (" — &) (22)
(B + B — dd) = (8" — /d"B) (& — &)
al(ﬁ' + ‘8”) (1 — alall) o (Bl I ”B”) (all — al). (23)

III. TRANSFER REPRESENTATION

It is clear from the form of (12) to (20) that a coupled
transmission line formalism is appropriate to the present
discussion. An impedance or scattering representation could
be used, but it is found convenient, instead, to use a transfer
matrix representation, the purpose of which is to relate the
field at one value of z to that at another value of z. Sub-
scripts a, b, ¢, etc. will refer to the planes z=a, z=b, z=¢,
etc., where a<b<c. Then

, 1, o\ [A e #e
(Bay') = . . o
—Jo, —J Bie#e
with a similar expression for (E"). The elimination of A4,

and B, between the two equations leads to the desired
relation

(Bai') = M(E,\) (24)
where
1
M =
1—dad’
—]a, (e.?ﬂ”t — e.ﬁg’t)’ —-a’a/,eiﬁ”t + ()J.B,t
and t=b—a. It is found similarly that
(Bo) = M*(E,-) (26)
so that (24) and (26) may be combined
B, M, 0 By
(( + )> _ ( )(( bt ))' @7)
(Ba.) 0, M*/\(E,))
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Fig. 3. v as a function of the generalized parameters 4 and ¢.

7 specifies the anisotropy and ¢ the rate of twist.

Quantities §; and f,, related directly to the properties of
the medium, will be defined

B12 = B2 — p%; Bs? = Bs% — p? (28)

and the quantities ¢, ¢, v, and § will be introduced

e=(@"—p)= [(52 - I§1)2 + 4p2]1/2t (29)
144 + ,t _ _ t
= @_2_Q = [(,32 + B2+ 4pz]1/2E (30)
__2_08—// 4 3.3, 1/2
v=¢/ (P ) 31)
1— oo’ Bt+B\@B. — B2+ 4p?
a’ 1/4 6_1)1/4
b={—— =|—= 32
(-7 -G )

Of these quantities, which are introduced because they
greatly facilitate the interpretation of transfer and polariza-
tion relations, ¢ and & seldom require consideration and e
can be regarded as a generalized differential phase shift.
v is an important single parameter in terms of which those
special properties related to the twist of the material can be
expressed. Using the new quantities, (25) becomes

5 0 &L 0
w=(o %G 3)
0, &t 0, ]
where

N = ¢% {cos i(l) O) + V1 ;02 sin i<1’ 0)
2\0, 1 2 \0. —1
. € /0, —1
—l—vsm—z-(L 0)} (34)

v is shown plotted in Fig. 3 as a function of ¢ and » which,
respectively, specify the twist and anisotropy of the material
and are given by

(33)

2p?
= gaype

Ko — K1

ke + K1

7= (35)
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The frequency dependence of the quantities can be ob-
tained in a straightforward manner with the following result

p2
1—
p —
_]: _5_ - B18: (36)
e df L4 4p?
(B2 — B1)?
2
‘o 1+
J j: B1B: (37)
¢ df n 4p?
(B1 + B2)?
ol e )
f dv n 2p? \ B2 Bs®
LR . (38)
v df

gepa(1+ 1)
o B — B)*

Of particular interest is the fact that de/df=0 at p=p, where

B1282*
g 39
R XREE 59
and dv/df=0 at p=p, where
2 B.26y°
AL LI 40
T gt s 4o

1V. DISCONTINUITIES AND TRANSITION REGIONS

The electric and magnetic fields must match at a dis-
contintuity across the plane z=a caused by a change in
K1, k2, O p. That is, where b=a-+0

(Bat) + (Bo) = (Eyy') + (Ep)
(Hoi!) + (Ho ') = (Hoy') + (Ho.").

(41)
(42)
The substitution of (20) in (42) gives two equations for

(E.,") and (E,.'), and the transfer matrix for the discon-
tinuity boundary can be derived

Ea ’ U, V I
() =G o)) @
E,' v*, U*/\E;’
where
U = %La—l(Gb + Lb - Ga + La)
1L +h), —j
=<2(.+ )s Jg> (44)
—jm, 31+ 1)
V= %La—l(Gb - Lb - Ga + La)
101 — —
=<2(. R), Jg> 45)
—-Jm, %(l - l)

47
and the quantities %, /, g, and m are given by
< LB+ ﬁ')
- = (24
b= (B2/B81)s - " —d'/e
(B2/B1)a ( , 87+ B’)
ST
o — o .
A
(5 4/1+<5 fﬁ)?)
- T (46)
4p?

B/‘/l"f‘f* _>
(2 B: + B/,
al/ a/ a/l_l_a/
<p7 ,>—<P ” 7)
m _ _1 a —a/a a’ —a'/y
2 <” ”+,3,>
@ r !
o' —d'/,

9= (52/51)(1 B
<;D 3—2—51) _ <p 52—51>
1 _2 _1 _2 3 a
_ 1 B2+ B1/s B2+ 81 . 47
2 _ 4p?
<Bz 14+ — >

(B2 + B1)?
The relationship for two discontinuities separated by a
twist section can be immediately written

() =G oo, G o)
(E,y)  \V*, U*Ja\O, M*/,\V*, U*/)a
@)
(B.)/)"

An explicit expansion of (48) can be obtained if the medium
at z=d is the same as at z=a. If, in addition, ¢ =rnr and

E=NT Py thell
<Ea-|— > <1 0><Ed+ >
E a— 0 1 Ed_l )

That is the field, irrespective of its incident polarization,
emerges from the twist medium unchanged except for a
rotation about the z axis of angle 6. A rearrangement of the
equations in scattering form is straightforward and permits
the direct evaluation of reflection and transmission coeffi-
cients at an interface.

The special application to a tapered or stepped transition
region will be examined. In addition to the usual assump-
tions for a tapar that reflections do not significantly accumu-
late, it will be supposed further that »=constant, and that
the increment in p(B.—Bi/B2+F1) can be neglected. Then
the transfer trom medium (a) to medium (b) as shown in

(48)
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Fig. 4. The interface between two regions having different
anisotropy and twist parameters.
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Fig. 5. The transition into and out of a twist region via tapers.

Fig. 4 will be given by the matrix product M,U.,.M; in
which U,; has zero cross terms. That is

8, 0 3L 0
Zu—a Uabe = Na <
0, & 0, 6

(%(1 + h), 0 )
0, 3:(1+70
. (6;,, 0 )Nb <5,,—1, O>.
O, 0! 0, o
In the evaluation of the inner triple product it is found that

1 s 1 0 Bio \ 4/ Ban \ M4
—14+hrN—=—0+)— = .
2 ( + ) 6(; 2 ( + ) 60, (B-lu) (5241)

Therefore

g 3. 1475, O 51 0
sty = (52 280 Jwan (),

Bla BZa 0; 811—1 0; 817
It is obvious that this process is iterative through all taper
regions including regions of uniform twist. Therefore, a
twist medium suitably tapered from an isotropic medium of

constant «,, to another isotropic medium of constant xu,; as
shown in Fig. 5 can be described by the transfer matrix

1/4
Kout
) N

Kin

transfer matrix = ( (49)

where

N = NNN,---. (50)
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Due to the additive property of ¥, it follows that

N ,¢{ € (1, 0>+ T s € <1, 0>
= g7 — — 1?sin —
e cos2 0 1 J 12 s 2 \o, —1

0, —1
—+ v sin - < >} (34)
2\, O

e=¢€+ e+ e+ -
¢=¢st+ b+ b+ - -.

It has been assumed that the tapering of the medium has
been gradual and such that v=constant. However, under
conditions of low effective dielectric constant and low rates
of twist, (49) to (51) can also be applied to a medium faced
by “quarterwave” layers.

where

It

(51)

V. POLARIZATION RELATIONS

The theory of the preceding sections has its most obvious
application in devices for polarization conversion. It will
be assumed that satisfactory transitions exist so that (49)
can be applied; and as a preliminary step, the rectangular
components will be related to circularly polarized com-
ponents as follows

(Ex’ L/ r')
E> - ﬁ(—j, j><l’

in which #" and [’ are, respectively, the complex amplitudes
of the right-hand and left-hand components. By the use of
(52) and its inverse, it follows that

(52)

re 1/1, g 1. IN\/r
() =30 ()G e
L' 2\, —j AN
from which
Tb/
€% — - j8e7°
7‘0, Zb,
—_—— (54)
la/ 7'1,/
18— + e’
I
where
€
4/1 —v%sin >
sl = (55)

€
cos ¢/2 + v sin >

Now if #//I'=pe?#’, then |p+1/p—1| is the axial ratio of
the polarization ellipse, and ¢/ the anlge which the polariza-
tion ellipse makes with the x’ axis, this angle being measured
to the major axis if p>1 and to the minor axis if p<1.
Equations (54) and (55) relate these quantities at the plane
z=a to the corresponding quantities at the plane z=»5 with
the geometry shown in Fig. 6.

For right-hand circular polarization at z=5b, p,=« and
therefore p,e2¥'«= —(j/s)e—. If p,=1, the input radiation
is plane polarized, and the structure is a polarizer for the
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conversion of plane to circular polarization. It is seen from
(55) that

20 = — % + tan™! <v tan ~—2€—> (RH). (56)
For left-hand circular p,=0, p.e¥ a=jse—%, and

%) = % + tan—! <v tan g) (LH). 619

&

It follows from the further relation, s=1, that

T 4 1( v? >
€ = — -+ gin~ .
2 1—9?

Thus for a polarizer structure of given 81, 82 and p, v is
determined by (31) and e by (58). Then the necessary input
inclination angle is given by (56) or (57) and the polarizer
thickness by (29). Examination of (56) and (57) shows that
¥, varies from Fx/4 at v=0, the familiar orientation for
zero twist, to {0, 1r/2} at v?=1/2. It is seen that there is a
rather marked departure from the usual polarizer relations
at v?=1/2. Furthermore, it may be shown that there is an
improvement in frequency bandwidth by a factor of at least
w/2. However, where a twist medium arises inadvertently
due to the use of helicoidal strips as alluded to above, it is
usual to find that the corrections to the usual polarizer rela-
tions are marginally significant.

If plane polarized radiation emerges at z=»5b then p=1,
and if also p,=1, a simple rotation of plane polarization has
resulted. For this condition to obtain

e’ - jsed”

Jse?ity’ + e¥

(58)

e — o—io

making use of (55)

20’ = ¢ = — tan™! (v tan 5) (59)
and

20, = — o = tan™! <v tan é—) (60)

Therefore the plane of polarization has rotated through an
angle R given by,

R=AM4+y¢  —y¢,) = A8 — tan™! (v tan %) (61)

4

These remarkably simple relations (which are always subject
to the condition that plane polarization is converted exactly
to plane polarization) are an extension of those which exist
for a medium of zero twist. For the case of zero twist R=0
except when e=7 in which case R is indeterminate, and any
rotation may be obtained. If » is nonzero, a finite rotation is
obtained for all thicknesses of structure and there is no in-
determinacy. A numerical example of the rotation of plane
polarization is shown in Fig. 7. The flat regions in R have
been noted by van Doeren.?
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Fig. 6. The geometry for relating the polarization between the planes
z=a and z=>. The coordinate axes rotate through A6=p(b—a).
Yo and ¢’ indicate the orientation of the polarization ellipse at
z=g and z=>. R indicates the total rotation angle of the plane of
polarization. For the conversion of plane polarization to plane
polarization .’ = —y»’ and R= A0+ —v'.
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Fig. 7. v.' and R as functions of r=¢/x, for typical numerical ex-
amples. .’ is the angle which the electric vector makes with the
strip structure at z=a, while R is the rotation of the polarization
plane. These quantities are determined by the condition that plane
polarization incident at z=a emerges as plane polarization at z=5b
where b—a=t.
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VI. DiscussioN

The main result of this investigation can be stated as
follows. If the rate of twist is relatively low and the anisot-
ropy relatively high, then the field can be thought of as
attaching itself to the structure of the medium as it propa-
gates through it, and it therefore rotates. This situation cor-
responds to a low value of » and the conclusion stated above
is evident from (34) due to the relative unimportance of the
cross terms of the transfer matrix. In general, however, the
twist generates polarization coupling and an alteration of
propagation constants.

Discontinuities perpendicular to the direction of propa-
gation can be handled. Computer calculation would gen-
erally be necessary, but marked simplification occurs in
special cases notably for a taper region for which explicit
formulas can be obtained.

A physical structure having the properties dealt with in
this paper is not hard to visualize. It could consist of layers
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of a fabric in which warp and weft have markedly different
dielectric properties, each layer being oriented at an angle
with respect to the adjacent layer. Interesting speculation
on this matter is contained in a recent letter by Shelton.?
Any degree of twist per unit wavelength is possible with
these structures but the range of anisotropy appears to be
limited. A polarizer having a modest improvement in fre-
quency bandwidth (corresponding to »2=1/2) is feasible. The
frequency independent-relations (39) and (40) can also be
realized, but with a low anisotropy interesting polarization
properties would require an excessive thickness of material.

Finally it should be pointed out that this paper deals with
a one-dimensional problem. The lateral limitation of the
geometry by means of a waveguide or other boundary would
greatly complicate it.

3 P, Shelton, “Comments on ‘polarization transformation in twisted
anisotropic media,” > IEEE Trans. Microwave Theory and Technigues
(Correspondence), vol. MTT-14, p. 579, November 1966.

The Numerical Solution of Rectangular Waveguide
Junctions and Discontinuities of Arbitrary
Cross Section

CORNELIS A. MUILWYK, STUDENT MEMBER, IEEE, AND J. B. DAVIES

Abstract—A method is described of calculating automatically the
performance of junctions of rectangular waveguides including conduct-
ing cylinders of arbitrary shape. The only restriction is that the overall
problem should be effectively two-dimensional, i.e., the structure be uni-
form in some cross section. The one basic approximation made (which
could be removed) is shown to give useful results for the devices tested,
viz., for various shaped irises (inductive and capacitive) and the 4-port
H-plane junction.

1. INTRODUCTION

N AN EARLIER PAPER (1], the authors described a
J:[ method of solving the problem of the hollow waveguide

of arbitrary shape, and indicated that the procedure
could be applied directly to the solution of a wide range of
waveguide discontinuity problems of engineering interest.
The object of this paper is to describe the application and to
give some typical results.
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As with the previous paper [1], the object is to enable a
wide class of problems to be solvable with the one method
and the one computer program. It should be emphasized that
the technique of this paper depends on being able to calcu-
late the cutoff frequencies of an arbitrarily shaped waveguide.
Other methods have been described [2], [3] besides that
used in this paper, but it is not clear from published results
whether any of these is as automatic and rapid in computing.

The method can be applied directly to the analysis of a
2-, 3-, or m-port junction of rectangular waveguides contain-
ing arbitrarily shaped conducting structures. The waveguides
may have different dimensions, but the overall structure must
be uniform (i.e., have constant cross section) in one direc-
tion (either the “broad” or “narrow” transverse direction)
so that the resulting boundary-value problem is effectively
two-dimensional, Examples of such structures would include
the conducting post or iris (of any shaped cross section) in
rectangular waveguide, an offset or change of transverse
dimension in the rectangular waveguide, and for m-port
junctions the T, Y, and 4-port cross junctions. All these ex-
amples could be in the E plane or H plane.

The method used relies on analysis of the junction when
supporting pure standing waves, as used experimentally in
the “nodal-shift” or Weissfloch-Feenberg method of mea-



